

8

MERCEDES BENZ 722.9 PRELIMINARY INFORMATION

Mercedes Benz has produced a new 5th generation electronically controlled gearbox with seven forward and two reverse speeds.

Vehicle Application/Transmission Designation The W7A 700 is the only model size 722.9 being produced at the time of this written material, a smaller model the W7A 400 will be introduced at a later time. This transmission is referred to as:

NAG2(<u>Neues Automatische Getriebe</u>2)

New Automatic Gearbox 2 or 7G- Tronic Vehicle Applications:

Select non 4MATIC (2WD) MY 2004 vehicles

w/M113 engine.

S340, S/CL/E/SL500

Optional:

SLK (R171-09/04)

Standard Equipment:

CLS 350 (late 2004) E350 (late 2004) M Class (W164-2005) R Class (W251-2005) G Class (X164-2006)

End of production models that will unlikely receive the 722.9 would be W163, R170 & V463.

722.9 for W164/W251/X164 will be equipped with shift by wire (no shifter rod or cable). An electronic control module on the left rear side of the transmission just above the pan rail which operates a shift control valve and its position is monitored by a position sensor.

The 722.6 (NAG 1 or V) will continue production until approximately MY 2012 and installed in:

4 cyl models Maybach M275 vehicles

some select manufacturer's contract vehicles

Fluid Type

Newly developed suggested use "only" transmission fluid, referred to as "ATF 3353 with *higher* friction consistency, thermal stability and temperature rating. Can also be used on previous model 722.3/.4/.5/.6 transmissions. No scheduled maintenance required (fill for life) and available at Shell & Fuchs Europe oil suppliers in 1 liter bottles under Mercedes Benz part number *A001 989 45 03 10*.

Electronic Control Components

The Transmission Control Module (Y3/8n4) which is

Copyright © 2011 ATSG

flash capable, along with the following components: Eight Solenoids: Working Pressure Control Solenoid (Y3/8y1)K1Clutch Solenoid (Y3/8y2) K2 Clutch Solenoid (Y3/8y3) K3 Clutch Solenoid (Y3/8y4) B1Brake Clutch Solenoid (Y3/8y5) B2 Brake Clutch Solenoid (Y3/8v6) B3 Brake Clutch Solenoid (Y3/8y7) Torque Converter Lock Up Solenoid (Y3/8y8) Two Oil Floats Oil Control Float 1 (31) Oil Control Float 2 (32) **Three Speed Sensors** Turbine RPM Sensor (Y3/8n1) Internal RPM Sensor (Y3/8n2) Output RPM Sensor (Y3/8n3) Selection Range Sensor (Y3/8s1) are all integrated into the valve body assembly. **Shift Strategy** The shift strategy improvements include: • Shorter computer reaction time by 0.1 second • Downshifts shortened by up to 0.2 seconds • Coasting downshifts shortened by 0.4/2.5 seconds • 37-47 MPH acceleration times shortened by 23-28% (model dependant) • Fuel consumption reduced by up to 4% • Noise levels reduced, due to lower engine speed in 5th, 6th & 7th gear at constant vehicle speed • Flexible adaptation to vehicle and engine Variable Shift Programing Two basic shift programs can be varied by customer (same as 722.6) using the S/C button on the Electronic Shifter Module (ESM) "S"(Sport) 1st gear starts Normal shift points Reverse gear 1 (-3.416:1) "C" (Comfort) 2nd gear starts Earlier up-shifts and later downshifts Reverse gear 2 (-2.231:1) Note: Transmission will start in first gear if any of

Note: Transmission will start in first gear if any of the following conditions apply:

1st gear is manually selected

3/4 to full throttle acceleration from start Cold engine temp (pre catalytic warm up)

MERCEDES BENZ 722.9

PRELIMINARY INFORMATION

Shift Optimal Gear (SOG)

Shift into Optimal Gear software as known in previous models.

Up shifts and downshifts based on driving style and Alternate towing with vehicle drive axle lifted. engine load (similar to 722.6)

Shift interlock controlled by Electronic Shifter Module (ESM) same as previous models

Emergency function/Limp-home mode:

There are a variety of failsafe modes; if a solenoid is defective the gear affected is blocked (example solenoid Y3/8y7-B3 clutch is defective: no 1st, 7th or Reverse in "S" mode) If hydraulic fault prevents a gear from engaging then the previous gear will be applied. If the computer defaults while driving, all solenoids will be turned off. Solenoids that are normally open will allow full pressure to selected clutches and the B1 Brake transmission will be in 6th gear. After shifting to "P" oil pressure from K2 solenoid is redirected to B2/BR solenoid via emergency operation valves and the B transmission will now achieve 2nd in "D" and Reverse.

Gear Ratio

The gear ratios are achieved with four multi-disc	B3 Brake	3	2.0-2.4	2.
brakes and three multi-disc clutches, no free wheels		4	2.2-2.6	2.
units (sprags)		5	2.3-2.7	2.
There are three planetary gear sets:	Br Brake	N/A	1.0-1.4	1.
Two simple	K1 Clutch	3	2.0-2.4	
One Ravigneaux		4	2.2-2.6	
Torque Converter (same used in some 722.6)		5	2.4-2.8	2.
Torque converter operates in open or slip mode in all		6	2.4-2.8	
seven forward gears.	K2 Clutch	3	1.7-2.1	
Lock up converter is never fully locked.		4	1.9-2.3	
Converter is open in 1st & 2nd gear if throttle and		5	2.1-2.5	
output shaft speed are in "Zone A"		6	2.2-2.6	1.9
Converter is in slip-control in all 7 forward gear if		7		2.
throttle and output shaft speed are in "Zone B". Oil		8		2.
feed pressure to the converter is varied depending on	K3 Clutch	3		2.

the amount of desired slip. Open: High flow

Copyright © 2011 ATSG

Slip Control: Lower flow

Lock up clutch will turn off and transmission will shift F to a lower gear at oil temperatures of 140C or higher. Holds = 4 liters of fluid Incorporates damper springs integral to lock up clutch B to reduce vibration.

Vehicle Towing

If vehicle must be towed it should be transported by use of a flat bed trailer type of tow truck.

If either fore mentioned options are not available a tow bar (preferred) will suffice under the following conditions/limitations:

1. Turn key to position 2

2. Selector lever to"N" position

- 3. Max. towing speed 31 mph
- 4. Max. towing distance 31 miles

Note: If towing distance or speed exceeds pre mentioned values damage may occur to transmission. Clutch Clearances no. of disc 722.9 722.93

3

4

5

(**mm**)

2.0-2.4

2.2-2.6 2.2-2.6

(mm)

23-27

	U		2.0 2.1
B2 Brake (inter	nal tooth) 4	1.7-2	.1 1.7-2.1
*	5	1.8-2	.2 1.8-2.2
(exter	rnal tooth) 5	1.7-2	.1 1.7-2.1
× ×	6	1.8-2	.2 1.8-2.2
B3 Brake	3	2.0-2	.4 2.0-2.4
	4	2.2-2	.6 2.2-2.6
	5	2.3-2	.7 2.3-2.7
Br Brake	N/2	A 1.0-1	.4 1.0-1.4
K1 Clutch	3	2.0-2	.4
	4	2.2-2	.6
	5	2.4-2	.8 2.4-2.8
	6	2.4-2	.8
K2 Clutch	3	1.7-2	.1
	4	1.9-2	.3
	5	2.1-2	.5
	6	2.2-2	.6 1.9-2.3
	7		2.0-2.4
	8		2.1-2.5
K3 Clutch	3		2.4-2.8
	4	2.2-2	.6
	5	2.4-2	.8
All clutch cle	arances are	measured 1	between the
Flange and reta	iner ring, whil	le applying t	he amount of
hand pressure li	isted below.		
B1 = N600	B2 = N1000	B3 = N600)
BR = N/A	K1 = N 800	K2 = N120	00
K3 = N600			

Note: B2 Brake multi disc clutches use single sided plates at this point in time other clutch members may use single sided plates at a future date.

MERCEDES BENZ 722.9

PRELIMINARY INFORMATION

MERCEDES BENZ 722.9 HALL AFFECT SPEED SENSORS

Front speed sensor (Y3/8n1): monitors Input (Turbine) Shaft and back Ravigneaux Ring Gear speed. Center speed sensor (Y3/8n2): monitors Ravigneaux carrier and rear Ring Gear speed. Rear speed sensor (Y3/8n3): monitors Output Shaft speed from exciter ring on the Park Pawl gear

Note: Magnets are molded in a plastic ring and secured inside Non Ferrous flanges

Copyright © 2011 ATSG

RANGE SENSOR & ELECTRICAL CONNECTOR

Fluid Level Floats (2):To prevent oil foaming from gears running in fluid. The front one was added due to transmission extended length (41mm) causing oil to slosh during hard forward stops.

MERCEDES BENZ 722.9 SOLENOID APPLICATION

SOLENOID APPLICATION & SOLENOID FUNCTION													
CLU' BRA	TCH/ AKE	B	81	B2/.	BR*	E	83	K	K1	K	2	K	3
SOLI	ENOID	Y3/ N.O. Norr App	'8y5 . (M) mally plied	Y3/ N.C Nor. Ver	/8y6 . (M) mally nted	Y3/ N.C Norr Ver	/8y7 . (M) mally nted	Y3/ N.C Nor. Ver	/8y2 . (M) mally nted	Y3/ N.O Nori App	/8y3 . (M) mally plied	Y3/ N.O Nori App	/8y4 . (M) mally plied
Gear	Ratio	Current to Solenoid	Psi from Solenoid	Current to Solenoid	Psi from Solenoid	Current to Solenoid	Psi from Solenoid	Current to Solenoid	Psi from Solenoid	Current to Solenoid	Psi from Solenoid	Current to Solenoid	Psi from Solenoid
1	4.377	High	Low	Varying	Varying	Varying	Varying	Low	Low	High	Low	Varying	Varying
2	2.859	Varying	Varying	Varying	Varying	Low	Low	Low	Low	High	Low	Varying	Varying
3	1.921	High	Low	Varying	Varying	Low	Low	Varying	Varying	High	Low	Varying	Varying
4	1.368	High	Low	Varying	Varying	Low	Low	Varying	Varying	Varying	Varying	High	Low
5	1.000	High	Low	Low	Low	Low	Low	Varying	Varying	Varying	Varying	Varying	Varying
6	0.820	Varying	Varying	Low	Low	Low	Low	Low	Low	Varying	Varying	Varying	Varying
7	0.728	High	Low	Low	Low	Varying	Varying	Low	Low	Varying	Varying	Varying	Varying
N (1)		High	Low	Low	Low	Varying	Varying	Low	Low	High	Low	Varying	Varying
N (2)		Varying	Varying	Low	Low	Low	Low	Low	Low	High	Low	Varying	Varying
R (1)	-3.416	High	Low	(BR) Varying	(BR) Varying	Varying	Varying	Low	Low	High	Low	Varying	Varying
R (2)	-2.231	Varying	Varying	(BR) Varying	(BR) Varying	Low	Low	Low	Low	High	Low	Varying	Varying

N.O. (M) = Mercedes nomenclature for Normally Open. This refers to the Solenoid feed connection to Solenoid output pressure. To Simplify, Normally Open = Solenoid feed is connected to Solenoid output when the Solenoid is OFF, ATSG refers to that as Normally Applied.

N.C. (M) = Mercedes nomenclature for Normally Closed. This refers to the Solenoid feed connection to Solenoid output pressure. To Simplify, Normally Closed = Solenoid feed is blocked to Solenoid output when the Solenoid is OFF, ATSG refers to that as Normally Vented.

*B2 & BR share the same solenoid the oil is directed to a different clutch members by the selector shift valve

Failsafe while driving all solenoids will be turned off, transmission will shift to 6th gear. After engaging Park then Drive: only 2nd & Reverse gear are available.

MERCEDES BENZ 722.9 CLUTCH POSITION & APPLICATION

(1) S Mode (2) C Mode (X) Applied

SHIFT SEQUENCES

	B 1	B2	B3	K1	K2	К3
7th Gear			X		X	X
6th Gear	X				X	X
5th Gear				X	X	X
4th Gear		X		X	X	
3rd Gear		X		X		X
2nd Gear	X	X				X
1st Gear		X	X			X

The 722.9 transmission has Sequential shifting (clutch on clutch) in addition to providing a down shift strategy that allows the transmission to skip gears during down shifts as long as one clutch member is released as another is applied.

Copyright © 2011 ATSG

Automatic Transmission Service Group

MERCEDES BENZ 722.9

POWER FLOW

K1	B1 B3	K2 B	R K3	B2	
Gear	Ravigneaux (Rear Internal Ring Gear)	Center Plan (Output Sh	netary F	Rear Planetary	
First	2.25:1 Reduction	Reducti	on	Reduction	
Second	1.50:1 Reduction	Reducti	on	Reduction	
Third	1:1	Reducti	on	Reduction	
Fourth	1:1	Reducti	on		
Fifth	1:1	1:1		1:1]
Sixth	1.50:1 Reduction	Overdriv	ven	Overdriven	
Seventh	2.25:1 Reduction	Overdriv	ven	Overdriven	

* The Ravigneaux gear set drives the rear internal ring gear. For every 1 revolution of the ring gear both the rear and middle sun gears are forced to rotate 2.5 times (when the K3 clutch is applied).

The rear carrier and middle internal ring gear are being driven at input speed via the K2 clutch.

The difference between the speed of the middle sun gear and the middle internal ring gear causes the middle carrier and output shaft to rotate at an overdrive speed of 0.820:1 in 6th and 0.728:1 in 7th.

MERCEDES BENZ 722.9

POWER FLOW

The Ravigneaux Planet Small Ring Gear (5) is driven by the Input Shaft. The Long Planet Gears (15) drive the Short Planet Gears (16) to rotate inside the Large Ring Gear (8) held by the B3 Brake Clutch. An increase in torque and reduced rpm is transmitted to the Dual Planet Carrier (6). The Single Rear Planet Ring Gear (9) rotates at the same speed as it is mechanically connected to the Dual Planet Carrier. The Planet Gears (18) rotate around Sun Gear (11) held by the K3 Clutch and rotate Planet Carrier (10). The Single Front Planet Ring Gear (12) is mechanically connected to the Planet Carrier (10) and rotates at the same speed. Planetary Gears (17) rotate around Sun Gear (14) which is held by the B2 Brake Clutch and transfers the increased torque and reduced rotational speed to the Output Shaft through Planet Carrier (13). The Output Shaft rotates with reduced input speed in the direction of engine rotation at a ratio of 4.377.

Ravigneaux gear set:

Short Planet Gears (16) Long Planet Gears (15) Small Ring Gear (5) Dual Planet Carrier (6) Sun Gear (7) Large Ring Gear (8)

Torque Converter Lockup Clutch
 Turbine Wheel
 Stator
 Impeller
 Small Internal Geared Wheel
 Dual Planet Carrier
 Sun Gear
 Large Internal Geared Wheel
 Internal Geared Wheel
 Single Planetary Carrier
 Sun Gear
 Sun Gear
 Internal Geared Wheel

Front Single Planet Gear Set:

Planetary Gears (17) Ring Gear (12) Planet Carrier (13) Sun Gear (14)

Rear Single Planet Gear Set:

Planetary Gears (18) Ring Gear (9) Planet Carrier (10) Sun Gear (11)

13 Single Planetary Carrier
14 Sun Gear
15 Long Planet gears
16 Planet Gears
17 Planet Gears
17 Planet Gears
BR Multi-Disc Brake (BR)
B1 Multi-Disc Brake (B1)
B2 Multi-Disc Brake (B2)
B3 Multi-Disc Brake (B3)
K1 Multi-Disc Clutch (K1)
K2 Multi-Disc Clutch (K2)
K3 Multi-Disc Clutch (K3)

Copyright © 2011 ATSG

MERCEDES BENZ 722.9

POWER FLOW

The Ravigneaux Planet Small Ring Gear (5) is driven by the Input Shaft. The Long Planet Gears (15) rotate around Sun Gear (7) which is held by the B1 Brake Clutch. An increase in torque and reduced rpm is transmitted to the Dual Planet Carrier (6). The Single Rear Planet Ring Gear (9) rotates at the same speed as it is mechanically connected to the Dual Planet Carrier. The Planet Gears (18) rotate around Sun Gear (11) held by the K3 Clutch and rotate Planet Carrier (10). The Single Front Planet Ring Gear (12) is connected mechanically to the Planet Carrier (10) and rotates at the same speed. Planetary Gears (17) rotate around Sun Gear (14) which is held by the B2 Brake Clutch and transfers the increased torque and reduced rotational speed to the Output Shaft through Planet Carrier (13). The Output Shaft rotates with reduced input speed in the direction of engine rotation at a ratio of 2.859.

Ravigneaux gear set: Front Single Planet Gear Set: **Rear Single Planet Gear Set:** Short Planet Gears (16) Planetary Gears (17) Planetary Gears (18) Long Planet Gears (15) Ring Gear (12)Ring Gear (9) Planet Carrier (13) Planet Carrier (10) Small Ring Gear (5)Dual Planet Carrier (6) Sun Gear(14)Sun Gear(11)Sun Gear(7)Large Ring Gear (8) 1 Torque Converter Lockup Clutch 13 Single Planetary Carrier 2 Turbine Wheel 14 Sun Gear 3 Stator 15 Long Planet gears 16 Planet Gears 4 Impeller 5 Small Internal Geared Wheel **17** Planet Gears 6 Dual Planet Carrier BR Multi-Disc Brake (BR) 7 Sun Gear B1 Multi-Disc Brake (B1) B2 Multi-Disc Brake (B2)

- 8 Large Internal Geared Wheel
- 9 Internal Geared Wheel
- 10 Single Planetary Carrier
- 11 Sun Gear
- 12 Internal Geared Wheel
- Automatic Transmission Service Group

Copyright © 2011 ATSG

B3 Multi-Disc Brake (B3)

K1 Multi-Disc Clutch (K1)

K2 Multi-Disc Clutch (K2)

K3 Multi-Disc Clutch (K3)

MERCEDES BENZ 722.9

POWER FLOW

With the K1 Clutch engaged, the Ravigneaux Planetary Gear set components (5, 6, 7, 8, 15 & 16) are locked together and send Input Torque and Input Speed unchanged to Ring Gear (9). The Single Rear Planet Ring Gear (9) drives the Planet Gears (18) to rotate around Sun Gear (11) held by the K3 Clutch and rotate Planet Carrier (10). The Single Front Planet Ring Gear (12) is connected mechanically to the Planet Carrier (10) and rotates at the same speed. Planetary Gears (17) rotate around Sun Gear (14) which is held by the B2 Brake Clutch and transfers the increased torque and reduced rotational speed to the Output Shaft through Planet Carrier (13). The Output Shaft rotates with reduced input speed in the direction of engine rotation at a ratio of 1.921.

Ravigneaux gear set:

Short Planet Gears (16) Long Planet Gears (15) Small Ring Gear (5) Dual Planet Carrier (6) Sun Gear (7) Large Ring Gear (8)

Torque Converter Lockup Clutch
 Turbine Wheel
 Stator
 Impeller
 Small Internal Geared Wheel
 Dual Planet Carrier
 Sun Gear
 Large Internal Geared Wheel
 Internal Geared Wheel
 Single Planetary Carrier
 Sun Gear
 Internal Geared Wheel
 Sun Gear
 Internal Geared Wheel

Front Single Planet Gear Set: Planetary Gears (17) Ring Gear (12) Planet Carrier (13) Sun Gear (14)

Rear Single Planet Gear Set:

Planetary Gears (18) Ring Gear (9) Planet Carrier (10) Sun Gear (11)

13 Single Planetary Carrier
14 Sun Gear
15 Long Planet gears
16 Planet Gears
17 Planet Gears
BR Multi-Disc Brake (BR)
B1 Multi-Disc Brake (B1)
B2 Multi-Disc Brake (B2)
B3 Multi-Disc Brake (B3)
K1 Multi-Disc Clutch (K1)
K2 Multi-Disc Clutch (K2)
K3 Multi-Disc Clutch (K3)

Copyright © 2011 ATSG

Automatic Transmission Service Group

MERCEDES BENZ 722.9

POWER FLOW

With the K1 Clutch engaged, the Ravigneaux Planetary Gear set components (5, 6, 7, 8, 15 & 16) are locked together and send Input Torque and Input Speed unchanged to the Ring Gear (9). With the K2 Clutch engaged the Single Rear Planet Ring Gear (9) and Single Front Planet Ring Gear (12) rotate at the same speed. The Single Rear Planetary system is locked and not involved in the gear ratio. The engaged K2 Clutch drives the Single Front Planet Ring Gear (12) at Input Speed. The Planetary Gears (17) rotate around Sun Gear (14) which is held by the B2 Brake Clutch and transfers the increased torque and reduced rotational speed to the Output Shaft through Planet Carrier (13). The Output Shaft rotates with reduced input speed in the direction of engine rotation at a ratio of 1.368.

Ravigneaux gear set:

Short Planet Gears (16)
Long Planet Gears (15)
Small Ring Gear (5)
Dual Planet Carrier (6)
Sun Gear (7)
Large Ring Gear (8)
1 Torque Converter Lockup Clutch
2 Turbine Wheel
3 Stator
4 Impeller
5 Small Internal Geared Wheel
6 Dual Planet Carrier
7 Sun Gear
8 Large Internal Geared Wheel
9 Internal Geared Wheel

- 10 Single Planetary Carrier
- 11 Sun Gear
- 12 Internal Geared Wheel

Front Single Planet Gear Set:

Planetary Gears (17) Ring Gear (12) Planet Carrier (13) Sun Gear (14)

Rear Single Planet Gear Set:

Planetary Gears (18) Ring Gear (9) Planet Carrier (10) Sun Gear (11)

13 Single Planetary Carrier
14 Sun Gear
15 Long Planet gears
16 Planet Gears
17 Planet Gears
17 Planet Gears
BR Multi-Disc Brake (BR)
B1 Multi-Disc Brake (B1)
B2 Multi-Disc Brake (B2)
B3 Multi-Disc Brake (B3)
K1 Multi-Disc Clutch (K1)
K2 Multi-Disc Clutch (K2)
K3 Multi-Disc Clutch (K3)

Copyright © 2011 ATSG

MERCEDES BENZ 722.9

POWER FLOW

With the K1, K2 and K3 Clutch engaged, the Power Flow runs from the Input Shaft via the locked Ravigneaux Planetary Gear set components (5, 6, 7, 8, 15 & 16) and the locked Front Single Planetary Gear set (12, 13, 14 & 17) to the Output Shaft and rotate at the same speed as the Input shaft in the direction of engine rotation at a ratio of 1.000.

Ravigneaux gear set:

Short Planet Gears (16) Long Planet Gears (15) Small Ring Gear (5) Dual Planet Carrier (6) Sun Gear (7) Large Ring Gear (8)

Torque Converter Lockup Clutch
 Turbine Wheel
 Stator
 Impeller
 Small Internal Geared Wheel
 Dual Planet Carrier
 Sun Gear
 Large Internal Geared Wheel
 Internal Geared Wheel
 Single Planetary Carrier
 Sun Gear
 Internal Geared Wheel

Front Single Planet Gear Set:

Planetary Gears (17) Ring Gear (12) Planet Carrier (13) Sun Gear (14)

Rear Single Planet Gear Set:

Planetary Gears (18) Ring Gear (9) Planet Carrier (10) Sun Gear (11)

13 Single Planetary Carrier
14 Sun Gear
15 Long Planet gears
16 Planet Gears
17 Planet Gears
BR Multi-Disc Brake (BR)
B1 Multi-Disc Brake (B1)
B2 Multi-Disc Brake (B2)
B3 Multi-Disc Brake (B3)
K1 Multi-Disc Clutch (K1)
K2 Multi-Disc Clutch (K2)
K3 Multi-Disc Clutch (K3)

MERCEDES BENZ 722.9

POWER FLOW

MERCEDES BENZ 722.9

POWER FLOW

The Ravigneaux Planet Small Ring Gear (5) is driven by the Input Shaft. The Long Planet Gears (15) drive the Short Planet Gears (16) to rotate inside the Large Ring Gear that is held by the B3 Brake Clutch. An increase in torque and reduced rpm is transmitted to the Dual Planet Carrier (6). The Single Rear Planet Ring Gear (9) rotates at the same speed as it is mechanically connected to the Dual Planet Carrier. The Planet Gears (18) rotate Sun Gear (11) which in turn rotates Sun Gear (14) by the engaged K3 Clutch. Input Torque and Input Speed are transmitted to the Single Front Planet Ring Gear (12) by the engaged K2 Clutch. The speed difference between the Sun Gear (14) and Ring Gear (12) produces an increased speed and reduced torque to the Output Shaft through Planet Carrier (13). The Output Shaft rotates with reduced input speed in the direction of engine rotation at a ratio of 0.728.

Ravigneaux gear set:

Short Planet Gears (16) Long Planet Gears (15) Small Ring Gear (5) Dual Planet Carrier (6) Sun Gear (7) Large Ring Gear (8)

- Torque Converter Lockup Clutch
 Turbine Wheel
 Stator
 Impeller
 Small Internal Geared Wheel
 Dual Planet Carrier
 Sun Gear
 Large Internal Geared Wheel
 Internal Geared Wheel
 Single Planetary Carrier
 Sun Gear
 Internal Geared Wheel
 Internal Geared Wheel
- Front Single Planet Gear Set: Planetary Gears (17) Ring Gear (12) Planet Carrier (13) Sun Gear (14)
- **Rear Single Planet Gear Set:** Planetary Gears (18) Ring Gear (9) Planet Carrier (10)

Sun Gear(11)

13 Single Planetary Carrier
14 Sun Gear
15 Long Planet gears
16 Planet Gears
17 Planet Gears
BR Multi-Disc Brake (BR)
B1 Multi-Disc Brake (B1)
B2 Multi-Disc Brake (B2)
B3 Multi-Disc Brake (B3)
K1 Multi-Disc Clutch (K1)
K2 Multi-Disc Clutch (K2)
K3 Multi-Disc Clutch (K3)

Copyright © 2011 ATSG

MERCEDES BENZ 722.9

POWER FLOW

The Ravigneaux Planet Small Ring Gear (5) is driven by the Input Shaft. The Long Planet Gears (15) rotate around Sun Gear (7) held by the B1 Brake Clutch. An increase in torque and reduced rpm is transmitted to the Dual Planet Carrier (6). The Single Rear Planet Ring Gear (9) rotates at the same speed as it is mechanically connected to the Dual Planet Carrier. The Planet Gears (18) rotate around Sun Gear (11) The rotational direction of the Sun Gear is Reversed by Planet Carrier (10) which is held by the BR Brake Clutch. The applied K3 Clutch connects Sun Gear(14) to Sun Gear (11). This causing both Sun Gears to rotate at the same speed and direction and drive Planet Gears (17). This increases torque and reduces rotational speed to the Output Shaft through Planet Carrier (13). The Output Shaft rotates at a reduced input speed opposite to the direction of engine rotation at a ratio of -3.416

Ravigneaux gear set:

Short Planet Gears (16) Long Planet Gears (15) Small Ring Gear (5) Dual Planet Carrier (6) Sun Gear (7) Large Ring Gear (8)

Torque Converter Lockup Clutch
 Turbine Wheel
 Stator
 Impeller
 Small Internal Geared Wheel
 Dual Planet Carrier
 Sun Gear
 Large Internal Geared Wheel
 Internal Geared Wheel
 Single Planetary Carrier
 Sun Gear
 Internal Geared Wheel
 Internal Geared Wheel

Front Single Planet Gear Set: Planetary Gears (17)

Ring Gear (12) Planet Carrier (13) Sun Gear (14)

Rear Single Planet Gear Set:

Planetary Gears (18) Ring Gear (9) Planet Carrier (10) Sun Gear (11)

13 Single Planetary Carrier
14 Sun Gear
15 Long Planet gears
16 Planet Gears
17 Planet Gears
17 Planet Gears
BR Multi-Disc Brake (BR)
B1 Multi-Disc Brake (B1)
B2 Multi-Disc Brake (B2)
B3 Multi-Disc Brake (B3)
K1 Multi-Disc Clutch (K1)
K2 Multi-Disc Clutch (K2)
K3 Multi-Disc Clutch (K3)

Copyright © 2011 ATSG

MERCEDES BENZ 722.9

POWER FLOW

The Ravigneaux Planet Small Ring Gear (5) is driven by the Input Shaft. The Long Planet Gears (15) drive the Short Planet Gears (16) which rotate inside the Large Ring Gear (8) held by the B3 Brake Clutch. A decrease in rotational speed is transmitted to the Dual Planet Carrier (6). The Single Rear Planet Ring Gear (9) rotates at the same speed as it is mechanically connected to the Dual Planet Carrier. The Planet Gears (18) rotate around Sun Gear (11) The rotational direction of the Sun Gear is Reversed by Planet Carrier (10) which is held by the BR Brake Clutch. The applied K3 Clutch connects Sun Gear(14) to Sun Gear (11). This causing both Sun Gears to rotate at the same speed and direction and drive Planet Gears (17). This increases torque and reduces rotational speed to the Output Shaft through Planet Carrier (13). The Output Shaft rotates at a reduced input speed opposite to the direction of engine rotation at a ratio of -2.231

Ravigneaux gear set:

Short Planet Gears (16) Long Planet Gears (15) Small Ring Gear (5) Dual Planet Carrier (6) Sun Gear (7) Large Ring Gear (8)

Torque Converter Lockup Clutch
 Turbine Wheel
 Stator
 Impeller
 Small Internal Geared Wheel
 Dual Planet Carrier
 Sun Gear
 Large Internal Geared Wheel
 Internal Geared Wheel
 Single Planetary Carrier
 Sun Gear
 Internal Geared Wheel
 Internal Geared Wheel

Front Single Planet Gear Set:

Planetary Gears (17) Ring Gear (12) Planet Carrier (13) Sun Gear (14)

Rear Single Planet Gear Set:

Planetary Gears (18) Ring Gear (9) Planet Carrier (10) Sun Gear (11)

13 Single Planetary Carrier
14 Sun Gear
15 Long Planet gears
16 Planet Gears
17 Planet Gears
17 Planet Gears
BR Multi-Disc Brake (BR)
B1 Multi-Disc Brake (B1)
B2 Multi-Disc Brake (B2)
B3 Multi-Disc Brake (B3)
K1 Multi-Disc Clutch (K1)
K2 Multi-Disc Clutch (K2)
K3 Multi-Disc Clutch (K3)

Copyright © 2011 ATSG

MERCEDES BENZ 722.9

TORQUE CONVERTER CLUTCH STRATEGY

Copyright © 2011 ATSG

MERCEDES BENZ 722.9

TORQUE CONVERTER CLUTCH STRATEGY

MERCEDES BENZ 722.9

SHIFT BY WIRE

Copyright © 2011 ATSG

MERCEDES BENZ 722.9

FRONT PUMP

The crescent type pump, although the same design as the 722.6, has an additional recess on the suction side of the pump to help reduce intake noise.

This modification is expected to be produced on later 722.6 transmissions. Future pump housing and gears may be made out of aluminum in an effort to reduce weight and high temperatures.

Copyright © 2011 ATSG

MERCEDES BENZ 722.9 CASE COMPONENTS

Copyright © 2011 ATSG

MERCEDES BENZ 722.9 COOLER LINE FITTINGS

Transmission Cooler Ling Fittings do not have threads or Banjo type fittings. Cooler lines are sealed with rubber "O" rings on push-in type fittings secured with a retaining bolt.

Copyright © 2011 ATSG

MERCEDES BENZ 722.9

CHECKBALL & SMALL PARTS LOCATIONS

38

Automatic Transmission Service Group

MERCEDES BENZ 722.9

TRANSMISSION OIL PAN & LEVEL CHECK

The oil pan has been redesigned and there is no longer a filler tube used on the transmission case. It is now filled and fluid level checked through an overflow tube (clips onto pan). This new design pan has also been updated. The overflow tube and overall pan depth have been increased. The updated pan is now 3mm deeper and the overflow tube is 13.5mm longer (can be identified by its white color) than the previous design. This update now allows an increase of 0.2 liters of fluid compared to the older pan. If the earlier design pan is removed for repairs it is suggested to update to the later design, **Part # 220-270-09-12**.